Active learning is typically used to label data, when the labeling process is expensive. Several active learning algorithms have been theoretically proved to perform better than their passive counterpart. However, these algorithms rely on some assumptions, which themselves contain some specific parameters. This paper adresses the problem of adaptive active learning in a nonparametric setting with minimal assumptions. We present a novel algorithm that is valid under more general assumptions than the previously known algorithms, and that can moreover adapt to the parameters used in these assumptions. This allows us to work with a larger class of distributions, thereby avoiding to exclude important densities like gaussians. Our algorithm achieves a minimax rate of convergence, and therefore performs almost as well as the best known non-adaptive algorithms.


翻译:当标签过程昂贵时,主动学习通常用于标签数据。 几个主动学习算法在理论上被证明比被动对应算法表现更好。 但是,这些算法依赖某些假设,而这些假设本身就包含某些具体参数。 本文在非参数化的环境下,用最低假设来形容适应性积极学习的问题。 我们提出了一个比先前已知算法更一般的假设有效的新奇算法, 并且可以适应这些假设中使用的参数。 这使我们能够用更大规模的分布法来工作, 从而避免排除象大便士这样的重要密度。 我们的算法实现了微缩的趋同率, 因而几乎实现了最著名的非适应性算法。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Cross-Modal & Metric Learning 跨模态检索专题-2
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Cross-Modal & Metric Learning 跨模态检索专题-2
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员