The Gaussian reconstruction kernels have been proposed by Westover (1990) and studied by the computer graphics community back in the 90s, which gives an alternative representation of object 3D geometry from meshes and point clouds. On the other hand, current state-of-the-art (SoTA) differentiable renderers, Liu et al. (2019), use rasterization to collect triangles or points on each image pixel and blend them based on the viewing distance. In this paper, we propose VoGE, which utilizes the volumetric Gaussian reconstruction kernels as geometric primitives. The VoGE rendering pipeline uses ray tracing to capture the nearest primitives and blends them as mixtures based on their volume density distributions along the rays. To efficiently render via VoGE, we propose an approximate closeform solution for the volume density aggregation and a coarse-to-fine rendering strategy. Finally, we provide a CUDA implementation of VoGE, which enables real-time level rendering with a competitive rendering speed in comparison to PyTorch3D. Quantitative and qualitative experiment results show VoGE outperforms SoTA counterparts when applied to various vision tasks, e.g., object pose estimation, shape/texture fitting, and occlusion reasoning. The VoGE library and demos are available at: https://github.com/Angtian/VoGE.


翻译:高山重建核心由Westover(1990年)提出,由90年代的计算机图形界研究,从中间和点云中提供对象 3D 的替代几何表示。另一方面,目前最先进的可区别的成型器(SoTA),刘等人(2019年),使用光化法收集每个图像像素的三角形或点,并根据视距将之混合起来。在本文中,我们建议VoGE,利用体积高西重建核心骨架作为几何原始。输油管的VoGE使用射线追踪来捕捉最近的原始生物,并根据射线的体密度分布将其混合为混合物。为了有效地通过VoGE(2019年),我们建议对量密度汇总采用近似近方解决方案,并采用粗略到像素的战略。最后,我们提供CUDA VoGEA(VGA)实施,使实时水平能够与PyTorch3D(大地)相比具有竞争性的传输速度。Qalim和定性实验结果显示VGEA(在应用时的图象/图象/图象) 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
160+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
11+阅读 · 2020年8月3日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员