The Gaussian reconstruction kernels have been proposed by Westover (1990) and studied by the computer graphics community back in the 90s, which gives an alternative representation of object 3D geometry from meshes and point clouds. On the other hand, current state-of-the-art (SoTA) differentiable renderers, Liu et al. (2019), use rasterization to collect triangles or points on each image pixel and blend them based on the viewing distance. In this paper, we propose VoGE, which utilizes the volumetric Gaussian reconstruction kernels as geometric primitives. The VoGE rendering pipeline uses ray tracing to capture the nearest primitives and blends them as mixtures based on their volume density distributions along the rays. To efficiently render via VoGE, we propose an approximate closeform solution for the volume density aggregation and a coarse-to-fine rendering strategy. Finally, we provide a CUDA implementation of VoGE, which enables real-time level rendering with a competitive rendering speed in comparison to PyTorch3D. Quantitative and qualitative experiment results show VoGE outperforms SoTA counterparts when applied to various vision tasks, e.g., object pose estimation, shape/texture fitting, and occlusion reasoning. The VoGE library and demos are available at: https://github.com/Angtian/VoGE.
翻译:高山重建核心由Westover(1990年)提出,由90年代的计算机图形界研究,从中间和点云中提供对象 3D 的替代几何表示。另一方面,目前最先进的可区别的成型器(SoTA),刘等人(2019年),使用光化法收集每个图像像素的三角形或点,并根据视距将之混合起来。在本文中,我们建议VoGE,利用体积高西重建核心骨架作为几何原始。输油管的VoGE使用射线追踪来捕捉最近的原始生物,并根据射线的体密度分布将其混合为混合物。为了有效地通过VoGE(2019年),我们建议对量密度汇总采用近似近方解决方案,并采用粗略到像素的战略。最后,我们提供CUDA VoGEA(VGA)实施,使实时水平能够与PyTorch3D(大地)相比具有竞争性的传输速度。Qalim和定性实验结果显示VGEA(在应用时的图象/图象/图象) 。