In aspect-based sentiment analysis (ABSA), many neural models are equipped with an attention mechanism to quantify the contribution of each context word to sentiment prediction. However, such a mechanism suffers from one drawback: only a few frequent words with sentiment polarities are tended to be taken into consideration for final sentiment decision while abundant infrequent sentiment words are ignored by models. To deal with this issue, we propose a progressive self-supervised attention learning approach for attentional ABSA models. In this approach, we iteratively perform sentiment prediction on all training instances, and continually learn useful attention supervision information in the meantime. During training, at each iteration, context words with the highest impact on sentiment prediction, identified based on their attention weights or gradients, are extracted as words with active/misleading influence on the correct/incorrect prediction for each instance. Words extracted in this way are masked for subsequent iterations. To exploit these extracted words for refining ABSA models, we augment the conventional training objective with a regularization term that encourages ABSA models to not only take full advantage of the extracted active context words but also decrease the weights of those misleading words. We integrate the proposed approach into three state-of-the-art neural ABSA models. Experiment results and in-depth analyses show that our approach yields better attention results and significantly enhances the performance of all three models. We release the source code and trained models at https://github.com/DeepLearnXMU/PSSAttention.


翻译:在基于情感的方面分析(ABSA)中,许多神经模型都配备了一种关注机制,以量化每个背景词对情绪预测的贡献,然而,这种机制有一个缺陷:在最后的情感决定中,只考虑情绪极化的少许频繁的单词,而模型则忽视大量不常见的情绪单词。为了处理这一问题,我们建议对ABSA的焦点模型采取渐进式自我监督的注意力学习方法。在这个方法中,我们反复对所有培训实例进行情感预测,并同时不断学习有用的关注监督信息。在每次循环培训中,根据关注权重或梯度确定的对情绪预测影响最大的背景单词,作为对每种情况的正确/错误预测的积极/误导影响词被采纳。我们用这种方式提取的单词掩盖了以后的反复。为了利用这些提取的单词来改进ABSA的模型,我们用一个正规化的术语来扩大常规培训目标,鼓励ABSA的模型不仅充分利用所提取的积极上的背景词,而且还减少基于情绪预测力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力判断力分析力分析力判断力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力判断力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力分析力

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【情感分析】基于Aspect的情感分析模型总结(一)
深度学习自然语言处理
8+阅读 · 2020年3月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【情感分析】基于Aspect的情感分析模型总结(一)
深度学习自然语言处理
8+阅读 · 2020年3月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员