This work explains in detail the theory behind Complex-Valued Neural Network (CVNN), including Wirtinger calculus, complex backpropagation, and basic modules such as complex layers, complex activation functions, or complex weight initialization. We also show the impact of not adapting the weight initialization correctly to the complex domain. This work presents a strong focus on the implementation of such modules on Python using cvnn toolbox. We also perform simulations on real-valued data, casting to the complex domain by means of the Hilbert Transform, and verifying the potential interest of CVNN even for non-complex data.
翻译:这项工作详细解释了复杂价值神经网络(CVNN)背后的理论,包括Wirtinger 微积分、复杂的反向插图和诸如复杂层、复杂激活功能或复杂重量初始化等基本模块。我们还展示了未正确调整权重初始化以适应复杂域的影响。这项工作非常侧重于使用 cvnn 工具箱在 Python 上实施这些模块。 我们还对实际价值数据进行模拟,通过Hilbert 变换系统投向复杂域,并核实即使对非复合数据,CVN的潜在兴趣。