In many research fields in artificial intelligence, it has been shown that deep neural networks are useful to estimate unknown functions on high dimensional input spaces. However, their generalization performance is not yet completely clarified from the theoretical point of view because they are nonidentifiable and singular learning machines. Moreover, a ReLU function is not differentiable, to which algebraic or analytic methods in singular learning theory cannot be applied. In this paper, we study a deep ReLU neural network in overparametrized cases and prove that the Bayesian free energy, which is equal to the minus log marginal likelihoodor the Bayesian stochastic complexity, is bounded even if the number of layers are larger than necessary to estimate an unknown data-generating function. Since the Bayesian generalization error is equal to the increase of the free energy as a function of a sample size, our result also shows that the Bayesian generalization error does not increase even if a deep ReLU neural network is designed to be sufficiently large or in an opeverparametrized state.


翻译:在人工智能的许多研究领域中,已经证明深度神经网络对于在高维输入空间上估计未知函数是有用的。然而,它们的泛化性能从理论上还不完全清楚,因为它们是不可区别且奇异的学习机。此外,ReLU 函数不可微分,因此无法应用奇异学习理论中的代数或解析方法。在本文中,我们研究了过度参数化情况下的深度 ReLU 神经网络,证明了贝叶斯自由能(等于边缘似然的负对数或贝叶斯随机复杂度)即使神经网络的层数大于估计未知数据生成函数所需的层数时,也是有界的。由于贝叶斯泛化误差等于自由能随样本大小的增加,我们的研究结果也表明,在深度 ReLU 神经网络的设计足够大或处于过度参数化状态时,贝叶斯泛化误差也不会增加。

0
下载
关闭预览

相关内容

神经网络的基础数学
专知会员服务
202+阅读 · 2022年1月23日
专知会员服务
42+阅读 · 2020年12月18日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员