In this paper, we develop new efficient projection-free algorithms for Online Convex Optimization (OCO). Online Gradient Descent (OGD) is an example of a classical OCO algorithm that guarantees the optimal $O(\sqrt{T})$ regret bound. However, OGD and other projection-based OCO algorithms need to perform a Euclidean projection onto the feasible set $\mathcal{C}\subset \mathbb{R}^d$ whenever their iterates step outside $\mathcal{C}$. For various sets of interests, this projection step can be computationally costly, especially when the ambient dimension is large. This has motivated the development of projection-free OCO algorithms that swap Euclidean projections for often much cheaper operations such as Linear Optimization (LO). However, state-of-the-art LO-based algorithms only achieve a suboptimal $O(T^{3/4})$ regret for general OCO. In this paper, we leverage recent results in parameter-free Online Learning, and develop an OCO algorithm that makes two calls to an LO Oracle per round and achieves the near-optimal $\widetilde{O}(\sqrt{T})$ regret whenever the feasible set is strongly convex. We also present an algorithm for general convex sets that makes $\widetilde O(d)$ expected number of calls to an LO Oracle per round and guarantees a $\widetilde O(T^{2/3})$ regret, improving on the previous best $O(T^{3/4})$. We achieve the latter by approximating any convex set $\mathcal{C}$ by a strongly convex one, where LO can be performed using $\widetilde {O}(d)$ expected number of calls to an LO Oracle for $\mathcal{C}$.
翻译:在本文中, 我们为在线 Convex 优化 (OCO) 开发了新的高效的无投影算法。 在线渐变源( OGD) 是经典的 OCO 算法的一个范例, 它保证了最佳的美元( sqrt{T} ) 。 但是, OGD 和其他基于投影的 OCO 算法需要将Euclide 投影到可行的套件$( mathcal{ Cóbset} $( mathbb{R%d$) 。 对于各种利益, 这个预测步骤可以计算成本很高, 特别是当环境维度很大时。 这促使开发了无投OCO 算法, 将 Ouclide 预测转换到通常更便宜的操作, 如Linearneral Optical (LO) 。 然而, 状态的LO- blotal 算法只能通过一般的 $( t\3/4} 任何硬美元) 来实现一个小数 。 在本文中, 我们利用最近的一个无参数的 Onal learal lelearlelelelelelelelelelelelelelearlelele learn le le learst leardeal leal learde, lade, lax lax (O) lax) lade) lade) lax a ex a lax a lax a lax a old lax (美元 lax) lax a lax ds) lax a lax a lax a lax a lax a lax a laut a laut a laut a laut a laut a laut a laut a laut a laut a lauts a lauts d lad lauts a lauts d lax a lauts a lax a laut a lauts a laut a lauts a lauts a tral ds a lauts a lax a la la lauts a lauts a h