Recently, information theoretic analysis has become a popular framework for understanding the generalization behavior of deep neural networks. It allows a direct analysis for stochastic gradient/Langevin descent (SGD/SGLD) learning algorithms without strong assumptions such as Lipschitz or convexity conditions. However, the current generalization error bounds within this framework are still far from optimal, while substantial improvements on these bounds are quite challenging due to the intractability of high-dimensional information quantities. To address this issue, we first propose a novel information theoretical measure: kernelized Renyi's entropy, by utilizing operator representation in Hilbert space. It inherits the properties of Shannon's entropy and can be effectively calculated via simple random sampling, while remaining independent of the input dimension. We then establish the generalization error bounds for SGD/SGLD under kernelized Renyi's entropy, where the mutual information quantities can be directly calculated, enabling evaluation of the tightness of each intermediate step. We show that our information-theoretical bounds depend on the statistics of the stochastic gradients evaluated along with the iterates, and are rigorously tighter than the current state-of-the-art (SOTA) results. The theoretical findings are also supported by large-scale empirical studies1.


翻译:近期,信息论分析已成为理解深度神经网络的泛化行为的流行框架。它允许在没有诸如Lipschitz或凸性条件等强假设的情况下直接分析随机梯度/Langevin下降(SGD/SGLD)学习算法。然而,当前在该框架内的泛化误差界仍然远非最优,而这些界的实质性改进由于高维信息量的不可计算性而相当具有挑战性。为解决这个问题,我们首先提出了一种新的信息理论度量方法:Kernelized Renyi熵,通过借助希尔伯特空间中的算子表示进行计算。它继承了Shannon熵的一些特性,并且可以通过简单的随机采样有效地计算,同时保持与输入维度无关的特点。然后,我们在Kernelized Renyi熵的基础上建立SGD/SGLD的泛化误差界,其中可以直接计算互信息量,从而实现了对每个中间步骤紧密度的评估。我们表明,我们的信息理论界取决于沿着迭代点计算的随机梯度的统计信息,且比当前的最先进结果严格更紧一些。理论发现也由规模庞大的实证研究所证实。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
13+阅读 · 2022年10月20日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
38+阅读 · 2020年3月10日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
13+阅读 · 2022年10月20日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
38+阅读 · 2020年3月10日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员