Skin cancer, the most commonly found human malignancy, is primarily diagnosed visually via dermoscopic analysis, biopsy, and histopathological examination. However, unlike other types of cancer, automated image classification of skin lesions is deemed more challenging due to the irregularity and variability in the lesions' appearances. In this work, we propose an adaptation of the Neural Style Transfer (NST) as a novel image pre-processing step for skin lesion classification problems. We represent each dermoscopic image as the style image and transfer the style of the lesion onto a homogeneous content image. This transfers the main variability of each lesion onto the same localized region, which allows us to integrate the generated images together and extract latent, low-rank style features via tensor decomposition. We train and cross-validate our model on a dermoscopic data set collected and preprocessed from the International Skin Imaging Collaboration (ISIC) database. We show that the classification performance based on the extracted tensor features using the style-transferred images significantly outperforms that of the raw images by more than 10%, and is also competitive with well-studied, pre-trained CNN models through transfer learning. Additionally, the tensor decomposition further identifies latent style clusters, which may provide clinical interpretation and insights.


翻译:皮肤癌是最常见的人类恶性肿瘤,主要通过脱温分析、生物检查和病理学检查进行视觉诊断。然而,与其他类型的癌症不同,皮肤损伤的自动图像分类被认为更具挑战性,因为损伤外观的不规则性和变异性。在这项工作中,我们建议对神经风格传输(NST)进行修改,作为皮肤损伤分类问题的新图像处理前步骤。我们将每个脱温图像作为样式图像,并将腐蚀的风格转移到同质内容图像上。这将每个腐蚀的主要变异性转移到同一个局部区域,从而使我们能够将生成的图像合并在一起,通过温度变异性生成潜在、低级的风格特征。我们用从国际皮肤成像协作(ISIC)数据库收集并预处理的脱温数据集来培训和交叉评价我们的模型。我们展示了根据提取的色素特征,利用样式转移的图像将色素样式转换到同质内容图像的风格。这使我们得以通过温度变异的模型集集集集成10 % 和深度的深度的深度分析,也具有竞争力,通过深层次的模型和深层次分析提供更深层次的深度分析。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年8月3日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2020年8月3日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
9+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员