Recent progress in (semi-)streaming algorithms for monotone submodular function maximization has led to tight results for a simple cardinality constraint. However, current techniques fail to give a similar understanding for natural generalizations, including matroid constraints. This paper aims at closing this gap. For a single matroid of rank $k$ (i.e., any solution has cardinality at most $k$), our main results are: 1) a single-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of $0.3178$, and 2) a multi-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of $(1-1/e - \varepsilon)$ by taking a constant (depending on $\varepsilon$) number of passes over the stream. This improves on the previously best approximation guarantees of $1/4$ and $1/2$ for single-pass and multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in that any algorithm with a better guarantee than $1/2$ must make several passes through the stream and any algorithm that beats our guarantee of $1-1/e$ must make linearly many passes (as well as an exponential number of value oracle queries). Moreover, we show how the approach we use for multi-pass streaming can be further strengthened if the elements of the stream arrive in uniformly random order, implying an improved result for $p$-matchoid constraints.
翻译:单调子模式函数最大化( 半流式) 最近的进展( 半流式) 单调子模式功能最大化的算法导致简单基本限制的严格结果。 但是, 目前的技术无法对自然一般化, 包括类固醇限制产生类似的理解。 本文旨在缩小这一差距。 对于一等美元( 即, 任何解决方案以最多美元为基值) 的单流式算法, 我们的主要结果为:1) 单流式算法, 使用全方位tilde{ O}( k) 记忆, 并实现0. 3178美元的近似保证, 2 使用多端流式算法, 使用 $+3+( k) 的类似理解。 事实上, 我们多端流式算法中的多端流式算法, 要通过一个更牢固的算法, 才能在多端/ 平流式算法中 显示一个更牢固的算法, 我们的路径算法, 要通过一个更牢固的算法, 任何一流式算法, 要更精确地显示一个更精确的算法。