We present a game benchmark for testing human-swarm control algorithms and interfaces in a real-time, high-cadence scenario. Our benchmark consists of a swarm vs. swarm game in a virtual ROS environment in which the goal of the game is to capture all agents from the opposing swarm; the game's high-cadence is a result of the capture rules, which cause agent team sizes to fluctuate rapidly. These rules require players to consider both the number of agents currently at their disposal and the behavior of their opponent's swarm when they plan actions. We demonstrate our game benchmark with a default human-swarm control system that enables a player to interact with their swarm through a high-level touchscreen interface. The touchscreen interface transforms player gestures into swarm control commands via a low-level decentralized ergodic control framework. We compare our default human-swarm control system to a flocking-based control system, and discuss traits that are crucial for swarm control algorithms and interfaces operating in real-time, high-cadence scenarios like our game benchmark. Our game benchmark code is available on Github; more information can be found at https://sites.google.com/view/swarm-game-benchmark.
翻译:我们提出了一个用于测试实时、高气候情景下的人类群温控制算法和界面的游戏基准。 我们的基准包括虚拟ROS环境中的群温与群温游戏, 游戏的目标是捕捉来自对立群温的所有代理; 游戏的高气候是捕捉规则的结果, 导致代理团队规模迅速波动。 这些规则要求玩家在计划行动时, 既考虑目前处于他们手中的代理商数量, 也考虑对手群温的行为。 我们用默认的人类群温控制系统展示我们的游戏基准, 使玩家能够通过高水平触摸屏界面与群进行互动。 触摸屏幕接口将玩家的动作转换成通过低层次分散的ERGodic控制框架的群温控制命令。 我们比较了我们默认的人类群温控制系统, 并讨论了对实时、 高气候/ 界面控制算法 至关重要的特性 。 我们的游戏基准/ 可以在 Giam 上找到我们游戏基准 。