Monocular simultaneous localization and mapping (SLAM) is emerging in advanced driver assistance systems and autonomous driving, because a single camera is cheap and easy to install. Conventional monocular SLAM has two major challenges leading inaccurate localization and mapping. First, it is challenging to estimate scales in localization and mapping. Second, conventional monocular SLAM uses inappropriate mapping factors such as dynamic objects and low-parallax areas in mapping. This paper proposes an improved real-time monocular SLAM that resolves the aforementioned challenges by efficiently using deep learning-based semantic segmentation. To achieve the real-time execution of the proposed method, we apply semantic segmentation only to downsampled keyframes in parallel with mapping processes. In addition, the proposed method corrects scales of camera poses and three-dimensional (3D) points, using estimated ground plane from road-labeled 3D points and the real camera height. The proposed method also removes inappropriate corner features labeled as moving objects and low parallax areas. Experiments with eight video sequences demonstrate that the proposed monocular SLAM system achieves significantly improved and comparable trajectory tracking accuracy, compared to existing state-of-the-art monocular and stereo SLAM systems, respectively. The proposed system can achieve real-time tracking on a standard CPU potentially with a standard GPU support, whereas existing segmentation-aided monocular SLAM does not.
翻译:高级司机协助系统和自主驾驶中出现了单向同步本地化和绘图(SLAM),因为单一相机价格低廉且易于安装。常规单向单向 SLAM有两个主要挑战,导致本地化和绘图不准确。首先,估算本地化和绘图的尺度具有挑战性。第二,常规单向单向SLAM在绘图中使用了不适当的绘图因素,如动态物体和低平行区域。本文件建议改进实时单向个体SLAM,通过高效使用深学习的语义分解,解决上述挑战。为了实现拟议方法的实时执行,我们只对下标的关键框架进行语义分解,与绘图进程平行。此外,拟议方法纠正摄像配置和三维(3D)点的尺度,使用路标3D点和实际摄像高度的估计地面飞机。拟议方法还消除了以移动物体和低平面区域为标签的不适当的角落特征。8个视频序列的实验表明,拟议的单向SLAMM系统实现了大幅改进和可比的轨迹跟踪精度。此外,拟议的方法也实现了现有的州级标准系统。