We present randomized distributed algorithms for the maximal independent set problem (MIS) that, while keeping the time complexity nearly matching the best known, reduce the energy complexity substantially. These algorithms work in the standard CONGEST model of distributed message passing with $O(\log n)$ bit messages. The time complexity measures the number of rounds in the algorithm. The energy complexity measures the number of rounds each node is awake; during other rounds, the node sleeps and cannot perform any computation or communications. Our first algorithm has an energy complexity of $O(\log\log n)$ and a time complexity of $O(\log^2 n)$. Our second algorithm is faster but slightly less energy-efficient: it achieves an energy complexity of $O(\log^2 \log n)$ and a time complexity of $O(\log n \cdot \log\log n \cdot \log^* n)$. Thus, this algorithm nearly matches the $O(\log n)$ time complexity of the state-of-the-art MIS algorithms while significantly reducing their energy complexity from $O(\log n)$ to $O(\log^2 \log n)$.
翻译:暂无翻译