Critical open source software systems undergo significant validation in the form of lengthy fuzz campaigns. The fuzz campaigns typically conduct a biased random search over the domain of program inputs, to find inputs which crash the software system. Such fuzzing is useful to enhance the security of software systems in general since even closed source software may use open source components. Hence testing open source software is of paramount importance. Currently OSS-Fuzz is the most significant and widely used infrastructure for continuous validation of open source systems. Unfortunately even though OSS-Fuzz has identified more than 10,000 vulnerabilities across 1000 or more software projects, the detected vulnerabilities may remain unpatched, as vulnerability fixing is often manual in practice. In this work, we rely on the recent progress in Large Language Model (LLM) agents for autonomous program improvement including bug fixing. We customise the well-known AutoCodeRover agent for fixing security vulnerabilities. This is because LLM agents like AutoCodeRover fix bugs from issue descriptions via code search. Instead for security patching, we rely on the test execution of the exploit input to extract code elements relevant to the fix. Our experience with OSS-Fuzz vulnerability data shows that LLM agent autonomy is useful for successful security patching, as opposed to approaches like Agentless where the control flow is fixed. More importantly our findings show that we cannot measure quality of patches by code similarity of the patch with reference codes (as in CodeBLEU scores used in VulMaster), since patches with high CodeBLEU scores still fail to pass given the given exploit input. Our findings indicate that security patch correctness needs to consider dynamic attributes like test executions as opposed to relying of standard text/code similarity metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员