The Voter model is a well-studied stochastic process that models the invasion of a novel trait $A$ (e.g., a new opinion, social meme, genetic mutation, magnetic spin) in a network of individuals (agents, people, genes, particles) carrying an existing resident trait $B$. Individuals change traits by occasionally sampling the trait of a neighbor, while an invasion bias $\delta\geq 0$ expresses the stochastic preference to adopt the novel trait $A$ over the resident trait $B$. The strength of an invasion is measured by the probability that eventually the whole population adopts trait $A$, i.e., the fixation probability. In more realistic settings, however, the invasion bias is not ubiquitous, but rather manifested only in parts of the network. For instance, when modeling the spread of a social trait, the invasion bias represents localized incentives. In this paper, we generalize the standard biased Voter model to the positional Voter model, in which the invasion bias is effectuated only on an arbitrary subset of the network nodes, called biased nodes. We study the ensuing optimization problem, which is, given a budget $k$, to choose $k$ biased nodes so as to maximize the fixation probability of a randomly occurring invasion. We show that the problem is NP-hard both for finite $\delta$ and when $\delta \rightarrow \infty$ (strong bias), while the objective function is not submodular in either setting, indicating strong computational hardness. On the other hand, we show that, when $\delta\rightarrow 0$ (weak bias), we can obtain a tight approximation in $O(n^{2\omega})$ time, where $\omega$ is the matrix-multiplication exponent. We complement our theoretical results with an experimental evaluation of some proposed heuristics.


翻译:选民模型是一个研究周全的随机过程,它模拟入侵带有现有常住特质的个人(代理人、人、基因、粒子)网络(代理人、人、基因、粒子)的新特质$A$(例如新观点、社会网友、基因变异、磁旋),带有现有常住特质$B$。个人通过偶尔取样邻居的特质而改变特质,而入侵偏差美元代表了采用新特质$A$相对于常住特质$B$的特质。入侵的强度以整个人口最终采用特质$美元(例如新观点、社会网友、人、基因变异性、磁性旋转)的概率来衡量。举例来说,当模拟社会特质的扩展时,入侵偏差代表了局部激励。在本文中,我们将标准偏差的选民模式概括为定位特异性模式,其中入侵偏差只表现在网络的任意分数$美元(美元)上, 也就是固定的直径直径值值值,而我们则进行最偏差的预估。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员