This paper proposes a novel multiple-input multiple-output (MIMO) symbol detector that incorporates a deep reinforcement learning (DRL) agent into the Monte Carlo tree search (MCTS) detection algorithm. We first describe how the MCTS algorithm, used in many decision-making problems, is applied to the MIMO detection problem. Then, we introduce a self-designed deep reinforcement learning agent, consisting of a policy value network and a state value network, which is trained to detect MIMO symbols. The outputs of the trained networks are adopted into a modified MCTS detection algorithm to provide useful node statistics and facilitate enhanced tree search process. The resulted scheme, termed the DRL-MCTS detector, demonstrates significant improvements over the original MCTS detection algorithm and exhibits favorable performance compared to other existing linear and DNN-based detection methods under varying channel conditions.
翻译:本文提出一个新的多投入多输出符号检测器,将深度强化学习(DRL)代理器纳入蒙特卡洛树搜索(MCTS)检测算法,我们首先介绍许多决策问题中使用的MCTS算法如何适用于MIMO检测问题,然后我们引入一个自设计的深强化学习代理器,由政策价值网络和州值网络组成,经过培训可探测MIMO符号。经过培训的网络产出被采纳为经过修改的MCTS检测算法,以提供有用的节点统计数据,促进强化树搜索过程。由此产生的计划称为DRL-MCTS检测器,显示比最初的MCTS检测算法和在不同的频道条件下与其他现有的线性探测方法和基于DNN的检测方法相比,显著改进。