Recent research has shown that non-additive image steganographic frameworks effectively improve security performance through adjusting distortion distribution. However, as far as we know, all of the existing non-additive proposals are based on handcrafted policies, and can only be applied to a specific image domain, which heavily prevent non-additive steganography from releasing its full potentiality. In this paper, we propose an automatic non-additive steganographic distortion learning framework called MCTSteg to remove the above restrictions. Guided by the reinforcement learning paradigm, we combine Monte Carlo Tree Search (MCTS) and steganalyzer-based environmental model to build MCTSteg. MCTS makes sequential decisions to adjust distortion distribution without human intervention. Our proposed environmental model is used to obtain feedbacks from each decision. Due to its self-learning characteristic and domain-independent reward function, MCTSteg has become the first reported universal non-additive steganographic framework which can work in both spatial and JPEG domains. Extensive experimental results show that MCTSteg can effectively withstand the detection of both hand-crafted feature-based and deep-learning-based steganalyzers. In both spatial and JPEG domains, the security performance of MCTSteg steadily outperforms the state of the art by a clear margin under different scenarios.


翻译:最近的研究显示,非附加图像偏差框架通过调整扭曲分布,有效地改善了安全绩效;然而,据我们所知,所有现有的非补充性建议都是基于手工设计的政策,只能应用于特定的图像领域,这在很大程度上防止非补充性图像偏差法释放其全部潜力。在本文件中,我们提议了一个自动的非补充性偏差学习框架,称为MCTSteg,以取消上述限制。在强化学习模式的指导下,我们将蒙特卡洛树搜索(MCTS)和基于Steganalyzer的环境模型结合起来,以建立MCTSteg。 MCTS作出顺序决定,在没有人类干预的情况下调整扭曲分布。我们拟议的环境模型被用于从每个决定中获得反馈。由于它具有自学特点和依赖领域的报酬功能,MCTSteg已成为第一个在空间和JPEG领域都能发挥作用的通用非补充性偏差框架。广泛的实验结果表明,MCTSteg能够有效地经受住对基于不同空间和深层空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间定位的测差差差差差差差差。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员