The downstream use cases, benefits, and risks of AI models depend significantly on what sort of access is provided to the model, and who it is provided to. Though existing safety frameworks and AI developer usage policies recognise that the risk posed by a given model depends on the level of access provided to a given audience, the procedures they use to make decisions about model access are ad hoc, opaque, and lacking in empirical substantiation. This paper consequently proposes that frontier AI companies build on existing safety frameworks by outlining transparent procedures for making decisions about model access, which we term Responsible Access Policies (RAPs). We recommend that, at a minimum, RAPs should include the following: i) processes for empirically evaluating model capabilities given different styles of access, ii) processes for assessing the risk profiles of different categories of user, and iii) clear and robust pre-commitments regarding when to grant or revoke specific types of access for particular groups under specified conditions.
翻译:暂无翻译