The standard feedback model of reinforcement learning requires revealing the reward of every visited state-action pair. However, in practice, it is often the case that such frequent feedback is not available. In this work, we take a first step towards relaxing this assumption and require a weaker form of feedback, which we refer to as \emph{trajectory feedback}. Instead of observing the reward obtained after every action, we assume we only receive a score that represents the quality of the whole trajectory observed by the agent, namely, the sum of all rewards obtained over this trajectory. We extend reinforcement learning algorithms to this setting, based on least-squares estimation of the unknown reward, for both the known and unknown transition model cases, and study the performance of these algorithms by analyzing their regret. For cases where the transition model is unknown, we offer a hybrid optimistic-Thompson Sampling approach that results in a tractable algorithm.


翻译:强化学习的标准反馈模式要求披露每个被访问的州-州-行动对应方的奖赏。 然而,在实践中,往往没有如此频繁的反馈。 在这项工作中,我们迈出第一步,放松这一假设,需要较弱的反馈形式,我们称之为\emph{traffory communication}。我们不是观察每次行动后获得的奖赏,而是假设我们只得到一个分数,它代表了代理人所观察到的整个轨迹的质量,即通过这一轨迹获得的所有奖赏的总和。我们根据对已知和未知的过渡模式案例的未知奖赏的最小估计,将强化学习算法推广到这一环境,并通过分析遗憾来研究这些算法的绩效。对于未知的过渡模式,我们提供了一种混合的乐观-Thompson抽样方法,其结果是一种可移动的算法。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
3+阅读 · 2018年10月5日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员