Reasoning over structured graphs remains a fundamental challenge for Large Language Models (LLMs), particularly when scaling to large graphs. Existing approaches typically follow the retrieval-augmented generation (RAG) paradigm: first retrieving subgraphs relevant to the query and then generating answers conditioned on the retrieved subgraphs. However, such two-phase pipelines often struggle to faithfully incorporate graph structure, since the generation process is ultimately constrained by the quality and completeness of the retrieved subgraph. Although many advanced retrievers have been proposed recently to mitigate this issue, they are usually tailored to the training graphs and generalize poorly to unseen graphs, which limits their practical applicability. In this work, we propose Reasoning by Exploration (RoE), a novel approach that unifies retrieval and generation by framing reasoning over graphs as a process of graph exploration. At each step, the LLM selects candidate nodes and edges to explore, gradually constructing reasoning paths and generating answers along the way. To enable effective exploration, RoE is trained in two stages: supervised fine-tuning (SFT) on gold reasoning paths, followed by reinforcement learning (RL) to enhance exploration effectiveness and generalization. Experiments on benchmark datasets demonstrate that RoE achieves substantial overall improvements over baselines, while also generalizing effectively to unseen graphs.
翻译:暂无翻译