We present EvalMORAAL, a transparent chain-of-thought (CoT) framework that uses two scoring methods (log-probabilities and direct ratings) plus a model-as-judge peer review to evaluate moral alignment in 20 large language models. We assess models on the World Values Survey (55 countries, 19 topics) and the PEW Global Attitudes Survey (39 countries, 8 topics). With EvalMORAAL, top models align closely with survey responses (Pearson's r approximately 0.90 on WVS). Yet we find a clear regional difference: Western regions average r=0.82 while non-Western regions average r=0.61 (a 0.21 absolute gap), indicating consistent regional bias. Our framework adds three parts: (1) two scoring methods for all models to enable fair comparison, (2) a structured chain-of-thought protocol with self-consistency checks, and (3) a model-as-judge peer review that flags 348 conflicts using a data-driven threshold. Peer agreement relates to survey alignment (WVS r=0.74, PEW r=0.39, both p<.001), supporting automated quality checks. These results show real progress toward culture-aware AI while highlighting open challenges for use across regions.
翻译:暂无翻译