While self-supervised learning has been shown to benefit a number of vision tasks, existing techniques mainly focus on image-level manipulation, which may not generalize well to downstream tasks at patch or pixel levels. Moreover, existing SSL methods might not sufficiently describe and associate the above representations within and across image scales. In this paper, we propose a Self-Supervised Pyramid Representation Learning (SS-PRL) framework. The proposed SS-PRL is designed to derive pyramid representations at patch levels via learning proper prototypes, with additional learners to observe and relate inherent semantic information within an image. In particular, we present a cross-scale patch-level correlation learning in SS-PRL, which allows the model to aggregate and associate information learned across patch scales. We show that, with our proposed SS-PRL for model pre-training, one can easily adapt and fine-tune the models for a variety of applications including multi-label classification, object detection, and instance segmentation.


翻译:虽然自我监督的学习已被证明有益于一些愿景任务,但现有技术主要侧重于图像操作,可能无法在补丁或像素级别上将图像操作推广到下游任务,此外,现有的SSL方法可能不足以描述和将上述表述在图像规模之内和之间联系起来。在本文件中,我们提议了一个自我监督的金字塔代表学习(SS-PRL)框架。拟议的SS-PRL旨在通过学习适当的原型在补丁层次上产生金字塔的表示方式,让更多的学习者在图像中观察和联系内在的语义信息。特别是,我们在SS-PRL中展示了跨尺度的跨层次的补丁级相关学习,使得该模型能够汇总和联系跨补丁尺度上获得的信息。我们表明,我们提议的SS-PRL用于模型预培训,可以很容易地调整和微调各种应用模式的模式,包括多标签分类、对象探测和实例分割。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员