Improving the emotional awareness of pre-trained language models is an emerging important problem for dialogue generation tasks. Although prior studies have introduced methods to improve empathetic dialogue generation, few have discussed how to incorporate commonsense knowledge into pre-trained language models for controllable dialogue generation. In this study, we propose a novel framework that improves empathetic dialogue generation using pre-trained language models by 1) incorporating commonsense knowledge through prompt verbalization, and 2) controlling dialogue generation using a strategy-driven future discriminator. We conducted experiments to reveal that both the incorporation of social commonsense knowledge and enforcement of control over generation help to improve generation performance. Finally, we discuss the implications of our study for future research.
翻译:提高受过培训的语言模式的情感意识是产生对话任务的一个新出现的重要问题。虽然先前的研究已经引入了改进同情对话生成的方法,但很少有人讨论过如何将普通常识知识纳入经过培训的语言模式,以便进行可控对话生成。在本研究中,我们提出了一个新的框架,用经过培训的语言模式改进同情对话生成:1)通过迅速的口头解释纳入普通知识,2)利用战略驱动的未来歧视者控制对话生成。我们进行了实验,以揭示将社会常识知识纳入社会常识知识和实施对生成控制都有助于提高生成绩效。最后,我们讨论了我们研究对未来研究的影响。