项目名称: 二氧化铈Lewis酸性调控、耐水本质及其催化水解性能研究

项目编号: No.21303189

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王业红

作者单位: 中国科学院大连化学物理研究所

项目金额: 25万元

中文摘要: Lewis酸多相催化剂具有重要用途,但容易与水发生反应而失活,使得该类催化剂的开发充满了挑战。我们在前期研究工作中发现二氧化铈是耐水的Lewis酸催化剂(Yehong Wang, et al. J. Am. Chem. Soc., 135 (2013) 1506-1515),但其催化作用本质需要深入研究。本项目从调控二氧化铈表面氧缺陷位浓度和Lewis酸性入手,研究催化水解断裂C-O-C键活性中心的配位环境和电子状态,揭示同晶取代或控制还原后二氧化铈表面氧缺陷位浓度和Lewis酸性的变化规律及内在联系;研究二氧化铈Lewis酸中心与水的相互作用,揭示其耐水本质;设计并制备新的二氧化铈催化材料,实现温和条件下高效催化水解断裂C-O键;本项目拟开展的研究,拓展了二氧化铈在酸碱催化方面的应用,为研究其他氧化物酸性本质提供参考。

中文关键词: 二氧化铈;氧空位;路易斯酸中心;酸催化;Prins缩合-水解一锅法

英文摘要: Lewis heterogeneous catalysts have found great applications. Because they easily get deactivated by reacting with water, it still remains a challenging task to develop efficient water-tolerant Lewis catalysts. Our preliminary works (Yehong Wang,et al. J. Am. Chem. Soc., 135 (2013) 1506-1515) have shown that ceria was a water-tolerant Lewis catalyst. However the catalysis nature of ceria still remains unclear. Herein we propose to finely tune the surface concentration of oxygen defect sites and Lewis acidity by isomorphous replacement and partial reduction methods in order to control the coordination environment and electron state of active sites. The interaction between oxygen defect sites and water will be specially explored to understand the water-tolerant nature of ceria.We aim at achieving the highly efficient hydrolysis of C-O-C bonds to C-OH bonds via preparing new ceria-based catalytic materials, and at correlating a structure-activity relationship between surface oxygen defect sites and catalytic performance.Our study will open new avenues for catalytic application of ceria as acid-base catalyst, and will provide useful reference for studying other oxides.

英文关键词: CeO2;Oxygen vacancy;Lewis acid sites;acid-catalysis;Prins condensation-hydrolysis in one pot

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
16+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
小米在预训练模型的探索与优化
专知会员服务
19+阅读 · 2020年12月31日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
17+阅读 · 2020年8月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
专知会员服务
20+阅读 · 2020年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
16+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
小米在预训练模型的探索与优化
专知会员服务
19+阅读 · 2020年12月31日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
17+阅读 · 2020年8月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
专知会员服务
20+阅读 · 2020年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员