Open-domain dialogue systems aim to interact with humans through natural language texts in an open-ended fashion. Despite the recent success of super large dialogue systems such as ChatGPT, using medium-to-small-sized dialogue systems remains the common practice as they are more lightweight and accessible; however, generating diverse dialogue responses is challenging, especially with smaller models. In this work, we propose an Equal-size Hard Expectation--Maximization (EqHard-EM) algorithm to train a multi-decoder model for diverse dialogue generation. Our algorithm assigns a sample to a decoder in a hard manner and additionally imposes an equal-assignment constraint to ensure that all decoders are well-trained. We provide detailed theoretical analysis to justify our approach. Further, experiments on two large-scale open-domain dialogue datasets verify that our EqHard-EM algorithm generates high-quality diverse responses.
翻译:开放域对话系统旨在通过自然语言文本与人类进行开放式互动。尽管超大型对话系统(如 ChatGPT)最近取得了成功,但使用中小型对话系统仍然是常见的做法,因为它们更轻便易用;然而,使用较小的模型生成不同的对话响应是具有挑战性的。在本文中,我们提出了一种等大小硬 Expectation-Maximization(EqHard-EM)算法,用于训练用于多样化对话生成的多解码器模型。我们的算法以硬方式将样本分配给解码器,并附加等式分配约束,以确保所有解码器都得到充分的训练。我们提供了详细的理论分析,以证明我们的方法。此外,对两个大规模开放域对话数据集的实验验证了我们的 EqHard-EM 算法生成高质量的多样化响应。