Deep learning techniques have recently shown promise in the field of anomaly detection, providing a flexible and effective method of modelling systems in comparison to traditional statistical modelling and signal processing-based methods. However, there are a few well publicised issues Neural Networks (NN)s face such as generalisation ability, requiring large volumes of labelled data to be able to train effectively and understanding spatial context in data. This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network in a branched input Autoencoder architecture for use on multivariate time series data. The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data. Experimental results show that without hyperparameter optimisation, using Capsules significantly reduces overfitting and improves the training efficiency. Additionally, results also show that the branched input models can learn multivariate data more consistently with or without Capsules in comparison to the non-branched input models. The proposed model architecture was also tested on an open-source benchmark, where it achieved state-of-the-art performance in outlier detection, and overall performs best over the metrics tested in comparison to current state-of-the art methods.


翻译:深层学习技术最近在异常点探测领域显示出希望,提供了一种与传统的统计建模和信号处理方法相比灵活而有效的建模系统方法,然而,神经网络面临一些周密的公开问题,例如一般化能力,要求大量贴有标签的数据能够有效地培训并了解数据的空间背景。本文介绍了一个新的NN结构,将长期短期模型(LSTM)和卡普苏尔网络混合成一个单一的网络,在分支化输入自动coder结构中,供多变时间序列数据使用。提议的方法使用一种不受监督的学习技术克服问题,寻找大量贴标签的培训数据。实验结果表明,不使用超参数优化,就可以大大降低过度适应并提高培训效率。此外,结果还表明,分节化输入模型可以与非固定输入模型相比,或更一致地学习多变数数据。拟议的模型结构还用一种不受监督的学习技术克服问题,寻找大量贴标签的培训数据。实验结果表明,不使用超参数优化,使用卡普勒斯模型,就可以在目前测试的状态测试中进行最佳的测试。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
Arxiv
22+阅读 · 2022年2月24日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员