Differential privacy has become a popular privacy-preserving method in data analysis, query processing, and machine learning, which adds noise to the query result to avoid leaking privacy. Sensitivity, or the maximum impact of deleting or inserting a tuple on query results, determines the amount of noise added. Computing the sensitivity of some simple queries such as counting query is easy, however, computing the sensitivity of complex queries containing join operations is challenging. Global sensitivity of such a query is unboundedly large, which corrupts the accuracy of the query answer. Elastic sensitivity and residual sensitivity offer upper bounds of local sensitivity to reduce the noise, but they suffer from either low accuracy or high computational overhead. We propose two fast query sensitivity estimation methods based on sampling and sketch respectively, offering competitive accuracy and higher efficiency compared to the state-of-the-art methods.


翻译:差分隐私已成为数据分析、查询处理和机器学习中流行的保护隐私的方法,它向查询结果添加噪声,以避免泄露隐私。敏感性(或者删除或插入元组对查询结果的最大影响)决定了添加的噪声量。计算简单查询(例如计数查询)的敏感性很容易,但计算包含联接操作的复杂查询的敏感性是具有挑战性的。这样一个查询的全局敏感性是无界的,从而破坏了查询答案的准确性。弹性敏感性和残余敏感性提供局部敏感度的上界,以减少噪声,但它们要么精度低,要么计算开销高。我们提出了两种基于采样和草图的快速查询敏感度估计方法,与现有最先进方法相比,这两种方法都提供了竞争良好的准确性和更高的效率。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
159+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月3日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员