Network optimization is a crucial step in the field of deep learning, as it directly affects the performance of models in various domains such as computer vision. Despite the numerous optimizers that have been developed over the years, the current methods are still limited in their ability to accurately and quickly identify gradient trends, which can lead to sub-optimal network performance. In this paper, we propose a novel deep optimizer called Fast-Adaptive Moment Estimation (FAME), which for the first time estimates gradient moments using a Triple Exponential Moving Average (TEMA). Incorporating TEMA into the optimization process provides richer and more accurate information on data changes and trends, as compared to the standard Exponential Moving Average used in essentially all current leading adaptive optimization methods. Our proposed FAME optimizer has been extensively validated through a wide range of benchmarks, including CIFAR-10, CIFAR-100, PASCAL-VOC, MS-COCO, and Cityscapes, using 14 different learning architectures, six optimizers, and various vision tasks, including detection, classification and semantic understanding. The results demonstrate that our FAME optimizer outperforms other leading optimizers in terms of both robustness and accuracy.
翻译:暂无翻译