Score-based generative models (SGMs) are a powerful class of generative models that exhibit remarkable empirical performance. Score-based generative modelling (SGM) consists of a ``noising'' stage, whereby a diffusion is used to gradually add Gaussian noise to data, and a generative model, which entails a ``denoising'' process defined by approximating the time-reversal of the diffusion. Existing SGMs assume that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In many domains such as robotics, geoscience or protein modelling, data is often naturally described by distributions living on Riemannian manifolds and current SGM techniques are not appropriate. We introduce here Riemannian Score-based Generative Models (RSGMs), a class of generative models extending SGMs to compact Riemannian manifolds. We demonstrate our approach on a variety of manifolds, and in particular with earth and climate science spherical data.
翻译:基于分数的基因变异模型(SGM)是一个强大的基因变异模型(SGM),具有惊人的经验性。基于分数的基因变异模型(SGM)由“SGM”阶段和基因变异模型组成,前者使用“SGM”阶段,逐渐在数据中增加高斯噪音,后者则使用“SGM”阶段,后者通过接近扩散时间反射来界定“disobis”过程。现有的SGMs假设数据在欧几里德空间上得到支持,即具有平坦几何学的方块。在许多领域,例如机器人、地球科学或蛋白质建模领域,数据往往自然地被流传到流曼式的多元体和当前SGM技术上。我们在这里引入了“Riemannian 计价变异模型(RSGMs) ”,这是一组将SGMs扩展到紧凑的里曼多体的基因模型。我们展示了我们关于多种元的方法,特别是地球和气候科学球系数据的方法。