Years ago Zeev Rudnick defined the $\lambda$-Poisson generic sequences as the infinite sequences of symbols in a finite alphabet where the number of occurrences of long words in the initial segments follow the Poisson distribution with parameter $\lambda$. Although it has long been known that almost all sequences, with respect to Lebesgue measure, are Poisson generic, no explicit instance has yet been given. In this note we give a construction of an explicit $\lambda$-Poisson generic sequence over an alphabet of at least three symbols, for any fixed positive real number $\lambda$. Since $\lambda$-Poisson genericity implies Borel normality, the constructed sequence is Borel normal. The same construction provides explicit instances of Borel normal sequences that are not $\lambda$-Poisson generic.
翻译:几年前, Zeev Rudnick 定义了 $\ lambda$- Poisson 通用序列, 其定义是, 在限定字母中, 符号的无限序列, 初始部分的长字数量跟随Poisson 分布, 参数为$\ lambda$- Poisson 。 虽然人们早已知道, 几乎所有序列, 就Lebesgue 测量而言, 几乎都是Poisson 通用的, 但还没有给出明确的示例。 在本说明中, 我们为任何固定正数的正数 $\ lumbda$- Poisson 的字母设置了一个明确的 $lambda$- Poisson 通用序列。 由于 $\ lambda$- Poisson 的通用性意味着boel 正常性, 构建的序列是 Borel 正常的。 同样的构造提供了非 $lambda$- Poisson 通用的 Borel 常规序列的明显实例 。