Algorithmicists are well-aware that fast dynamic programming algorithms are very often the correct choice when computing on compositional (or even recursive) graphs. Here we initiate the study of how to generalize this folklore intuition to mathematical structures writ large. We achieve this horizontal generality by adopting a categorial perspective which allows us to show that: (1) structured decompositions (a recent, abstract generalization of many graph decompositions) define Grothendieck topologies on categories of data (adhesive categories) and that (2) any computational problem which can be represented as a sheaf with respect to these topologies can be decided in linear time on classes of inputs which admit decompositions of bounded width and whose decomposition shapes have bounded feedback vertex number. This immediately leads to algorithms on objects of any C-set category; these include -- to name but a few examples -- structures such as: symmetric graphs, directed graphs, directed multigraphs, hypergraphs, directed hypergraphs, databases, simplicial complexes, circular port graphs and half-edge graphs. Thus we initiate the bridging of tools from sheaf theory, structural graph theory and parameterized complexity theory; we believe this to be a very fruitful approach for a general, algebraic theory of dynamic programming algorithms. Finally we pair our theoretical results with concrete implementations of our main algorithmic contribution in the AlgebraicJulia ecosystem.


翻译:算法学家们非常清楚地意识到,快速动态编程算法在计算成份(甚至递归)图形时往往是正确的选择。 在这里, 我们开始研究如何将民俗直觉推广到数学结构中, 使数学结构变大。 我们通过采用一个分类视角来达到这种横向一般性, 这让我们能够显示:(1) 结构分解( 近期对许多图形分解的抽象概括性) 定义了Grothendieck 数据类别( 高级类别) 的生态系统结构学( 高级类别), 以及 (2) 任何计算问题, 在计算这些表层学时, 可以作为外表的缩略图。 可以在线性时间内决定, 如何将这种民俗直视直观直观的直观直观推到数学结构结构结构结构结构结构学中。 这立即导致任何C组对象的算法; 包括 -- 仅举几个例子 -- 诸如: 对称图形、 定向编程图、 定向多面图、 高级图学、 定向高比学、 高理学、 高理学、 数据库、 精度复杂度、 结构学、 循环结构学、 理论推理学、 最终理论、 理论、 我们的图、 理论、 理论、 理论推介、 我们的精极、 、 、 理论、 理论、 理论、 理论、 理论、 理论、 理论、 等。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
64+阅读 · 2021年6月18日
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员