Aczel-Mendler bisimulations are a coalgebraic extension of a variety of computational relations between systems. It is usual to assume that the underlying category satisfies some form of axiom of choice, so that the theory enjoys desirable properties, such as closure under composition. In this paper, we accommodate the definition in general regular categories and toposes. We show that this general definition 1) is closed under composition without using the axiom of choice, 2) coincide with other types of coalgebraic formulations under milder conditions, 3) coincide with the usual definition when the category has the regular axiom of choice. In particular, the case of toposes heavily relies on power-objects for which we recover some nice properties on the way. Finally, we describe several examples in Stone spaces, toposes for name-passing, and modules over a ring.
翻译:暂无翻译