For aerial swarms, navigation in a prescribed formation is widely practiced in various scenarios. However, the associated planning strategies typically lack the capability of avoiding obstacles in cluttered environments. To address this deficiency, we present an optimization-based method that ensures collision-free trajectory generation for formation flight. In this paper, a novel differentiable metric is proposed to quantify the overall similarity distance between formations. We then formulate this metric into an optimization framework, which achieves spatial-temporal planning using polynomial trajectories. Minimization over collision penalty is also incorporated into the framework, so that formation preservation and obstacle avoidance can be handled simultaneously. To validate the efficiency of our method, we conduct benchmark comparisons with other cutting-edge works. Integrated with an autonomous distributed aerial swarm system, the proposed method demonstrates its efficiency and robustness in real-world experiments with obstacle-rich surroundings. We will release the source code for the reference of the community.
翻译:对于空中群落,在规定的编队中进行导航在各种情景中广泛采用,但是,相关的规划战略通常缺乏避免在杂乱环境中设置障碍的能力。为了解决这一缺陷,我们提出了一种最优化的方法,确保编队飞行无碰撞轨道生成。在本文中,提出了一种新的不同指标,以量化编队之间总体相似距离。然后,我们将这一指标发展成一个最优化框架,利用多轨线进行空间-时空规划。对碰撞处罚的最小化也被纳入该框架,以便同时处理编队保护和避免障碍的问题。为了验证我们的方法的效率,我们与其他尖端工程进行基准比较。与一个自主分布式的空中群温系统相结合,拟议方法显示了其在现实世界中与障碍密集周围实验的效率和稳健性。我们将发布社区参考源代码。