The human cultural repertoire relies on innovation: our ability to continuously and hierarchically explore how existing elements can be combined to create new ones. Innovation is not solitary, it relies on collective accumulation and merging of previous solutions. Machine learning approaches commonly assume that fully connected multi-agent networks are best suited for innovation. However, human laboratory and field studies have shown that hierarchical innovation is more robustly achieved by dynamic communication topologies. In dynamic topologies, humans oscillate between innovating individually or in small clusters, and then sharing outcomes with others. To our knowledge, the role of multi-agent topology on innovation has not been systematically studied in machine learning. It remains unclear a) which communication topologies are optimal for which innovation tasks, and b) which properties of experience sharing improve multi-level innovation. Here we use a multi-level hierarchical problem setting (WordCraft), with three different innovation tasks. We systematically design networks of DQNs sharing experiences from their replay buffers in varying topologies (fully connected, small world, dynamic, ring). Comparing the level of innovation achieved by different experience-sharing topologies across different tasks shows that, first, consistent with human findings, experience sharing within a dynamic topology achieves the highest level of innovation across tasks. Second, experience sharing is not as helpful when there is a single clear path to innovation. Third, two metrics we propose, conformity and diversity of shared experience, can explain the success of different topologies on different tasks. These contributions can advance our understanding of optimal AI-AI, human-human, and human-AI collaborative networks, inspiring future tools for fostering collective innovation in large organizations.
翻译:人类文化文库依赖于创新:我们持续和分层次地探索现有要素如何结合现有要素以创造新要素的能力;创新不是孤立的,而是依赖集体积累和合并先前的解决方案。机器学习方法通常认为完全连接的多代理网络最适合创新。然而,人类实验室和实地研究表明,动态通信结构更加有力地实现了等级创新。在动态结构学中,个体或小组创新之间的人类混杂,然后与他人分享结果。根据我们的知识,在机器学习中没有系统地研究多代理人创新的地形学的作用。仍然不清楚的是,哪些传播的地形学是最适合创新任务的最佳方法,以及(b)经验分享的特性可以改善多层次创新。在这里,我们使用一个多层次的等级问题设置(WordCraft),有三个不同的创新任务。在动态结构学中,我们系统地设计DQNs网络,从它们重现的缓冲中,在不同的结构学上(完全相连的、小世界、动态的、环)中,在机器学习中,对创新的多层次进行系统研究。在不同的历史结构中,通过不同层次上分享,我们之间分享的高度创新的高度经验可以显示,在不同的历史上,在人类的层次上,我们之间可以形成一个层次上分享,在不同的层次上发现中可以形成一个层次上,这些经验,在人类的层次上,在人类的层次上分享, 的层次上,这些经验可以形成一个层次上,在人类的层次上,在人类的层次上,在人类的层次上,在人类的层次上,在人类的层次上,在人类的层次上,可以产生一个层次上,在人类的层次上,在不同的研究的层次上,在不同的层次上,在不同的层次上, 上, 上,可以显示,可以提出一个层次上,在人类的层次上,在人类的层次上, 的层次上,在人类的层次上,在不同的层次上, 上, 上, 上,可以显示,可以显示, 上, 上,在不同的层次上,在不同的层次上,在不同的层次上,在不同的层次上, 上, 上, 上,在人类的层次上,可以显示,可以显示,在人类的层次上,在不同的层次上,在不同的层次上,在不同的层次上,在不同的层次上, 上,