Self-organized emergent patterns can be widely seen in particle interactions producing complex structures such as chemical elements and molecules. Inspired by these interactions, this work presents a novel stochastic approach that allows a swarm of heterogeneous robots to create emergent patterns in a completely decentralized fashion and relying only on local information. Our approach consists of modeling the swarm configuration as a dynamic Gibbs Random Field (GRF) and setting constraints on the neighborhood system inspired by chemistry rules that dictate binding polarity between particles. Using the GRF model, we determine velocities for each robot, resulting in behaviors that lead to the creation of patterns or shapes. Simulated experiments show the versatility of the approach in producing a variety of patterns, and experiments with a group of physical robots show the feasibility in potential applications.
翻译:在产生化学元素和分子等复杂结构的粒子相互作用中,可以广泛看到自我组织的浮现模式。在这种相互作用的启发下,这项工作提出了一种新的随机方法,允许一大批异体机器人以完全分散的方式,仅依靠当地信息,创造突发模式。我们的方法是将群落配置建模为动态的Gibbs随机场(GRF),并受化学规则的启发,对周围系统设置限制,这些化学规则决定了粒子之间的关联极化。我们利用GRF模型,确定每个机器人的速度,从而导致形成模式或形状的行为。模拟实验显示该方法在产生多种模式方面的多功能,与一组物理机器人的实验显示了潜在应用的可行性。