Modern datasets witness high-dimensionality and nontrivial geometries of spaces they live in. It would be helpful in data analysis to reduce the dimensionality while retaining the geometric structure of the dataset. Motivated by this observation, we propose a general dimension reduction method by incorporating geometric information. Our Spherical Rotation Component Analysis (SRCA) is a dimension reduction method that uses spheres or ellipsoids, to approximate a low-dimensional manifold. This method not only generalizes the Spherical Component Analysis (SPCA) method in terms of theories and algorithms and presents a comprehensive comparison of our method, as an optimization problem with theoretical guarantee and also as a structural preserving low-rank representation of data. Results relative to state-of-the-art competitors show considerable gains in ability to accurately approximate the subspace with fewer components and better structural preserving. In addition, we have pointed out that this method is a specific incarnation of a grander idea of using a geometrically induced loss function in dimension reduction tasks.
翻译:现代数据集见证了它们所居住的空间的高维度和非三维的几何分布。在数据分析中,减少维度,同时保留数据集的几何结构将有所帮助。我们以这一观察为动力,提出了一个通过纳入几何信息来减少一般维度的方法。我们的球形旋转元件分析(SRCA)是一种减少维度的方法,它使用球体或环球,接近一个低维的方块。这种方法不仅在理论和算法方面将球体组成部分分析法(SPCA)方法(SPCA)简单化,而且为我们的方法提供了全面的比较,作为理论保证的一个优化问题,同时也作为结构上保持低层次数据代表的一种问题。与最先进的竞争者有关的结果显示,在精确接近子空间的能力方面有很大进步,其组成部分较少,结构上保存得更好。此外,我们指出,这一方法是利用几何引损失功能进行尺寸缩减任务的宏大想法的具体体现。