We revisit on-average algorithmic stability of Gradient Descent (GD) for training overparameterised shallow neural networks and prove new generalisation and excess risk bounds without the Neural Tangent Kernel (NTK) or Polyak-{\L}ojasiewicz (PL) assumptions. In particular, we show oracle type bounds which reveal that the generalisation and excess risk of GD is controlled by an interpolating network with the shortest GD path from initialisation (in a sense, an interpolating network with the smallest relative norm). While this was known for kernelised interpolants, our proof applies directly to networks trained by GD without intermediate kernelisation. At the same time, by relaxing oracle inequalities developed here we recover existing NTK-based risk bounds in a straightforward way, which demonstrates that our analysis is tighter. Finally, unlike most of the NTK-based analyses we focus on regression with label noise and show that GD with early stopping is consistent.
翻译:我们重新审视了梯子平均算法稳定性(GD),以培训超分的浅神经网络,并证明新的一般化和超重风险界限,没有Neal Tangent Kernel(NTK)或Polliak-L}jasiewicz(PL)的假设。特别是,我们展示了甲骨文型界限,表明GD的概括性和超重风险由一个内插网络控制,而从初始化到最短的GD路径(从某种意义上说,是一个与最小的相对规范相交织的网络 ) 。 虽然这是内分泌的内分泌的内分泌者所知道的,但我们的证据直接适用于GD训练的网络,而没有中间内分泌。 与此同时,我们通过在此开发的放松或缩小不平等,我们以直截了现有的NTK的风险界限,这表明我们的分析更为密切。最后,我们与大多数基于NTK的分析侧重于带标签噪音的回归,并显示GD与早期停止是相一致的。