Fairness in visual recognition is becoming a prominent and critical topic of discussion as recognition systems are deployed at scale in the real world. Models trained from data in which target labels are correlated with protected attributes (e.g., gender, race) are known to learn and exploit those correlations. In this work, we introduce a method for training accurate target classifiers while mitigating biases that stem from these correlations. We use GANs to generate realistic-looking images, and perturb these images in the underlying latent space to generate training data that is balanced for each protected attribute. We augment the original dataset with this perturbed generated data, and empirically demonstrate that target classifiers trained on the augmented dataset exhibit a number of both quantitative and qualitative benefits. We conduct a thorough evaluation across multiple target labels and protected attributes in the CelebA dataset, and provide an in-depth analysis and comparison to existing literature in the space.
翻译:由于识别系统是在现实世界中大规模部署的,因此,在视觉识别的公平性正在成为一个突出和重要的讨论议题,从目标标签与受保护属性(如性别、种族)相关联的数据中培训的模型众所周知,可以学习和利用这些关联性。在这项工作中,我们引入了一种方法,用于培训准确的目标分类人员,同时减少这些关联性所产生的偏差。我们使用GANs来生成现实的图像,并在潜在的潜在空间中对这些图像进行干扰,以生成平衡每个受保护属性的培训数据。我们用这种被扰动生成的数据来增加原始数据集,并用经验证明,在扩大数据集方面接受培训的目标分类人员在数量和质量上都具有若干好处。我们在CelebA数据集中对多个目标标签和受保护属性进行彻底评估,并提供深入分析和与空间现有文献的比较。