论文2:Federated Learning with Fair Averaging
作者:王铮、范晓亮*、王程、温程璐、俞容山、Jianzhong Qi
简介:该论文提出一种基于梯度投影的联邦学习公平性算法(federated fair averaging,简称FedFV)。FedFV探索性地揭示了造成联邦学习公平性的重要因素:大尺度的梯度矛盾差异。该方法充分考虑了不同用户数据集之间的分布差异以及网络状态不稳定带来的掉线挑战,故让服务器得到一个兼顾公平性和准确性的高效模型。论文第一作者是信息学院2020级硕士研究生王铮,通讯作者是信息学院范晓亮高级工程师,合作作者包括澳大利亚墨尔本大学Jianzhong Qi高级讲师等。
https://www.zhuanzhi.ai/paper/1aac57f309c9778411b2d98710e73b12