Exploiting the relationships between attributes is a key challenge for improving multiple facial attribute recognition. In this work, we are concerned with two types of correlations that are spatial and non-spatial relationships. For the spatial correlation, we aggregate attributes with spatial similarity into a part-based group and then introduce a Group Attention Learning to generate the group attention and the part-based group feature. On the other hand, to discover the non-spatial relationship, we model a group-based Graph Correlation Learning to explore affinities of predefined part-based groups. We utilize such affinity information to control the communication between all groups and then refine the learned group features. Overall, we propose a unified network called Multi-scale Group and Graph Network. It incorporates these two newly proposed learning strategies and produces coarse-to-fine graph-based group features for improving facial attribute recognition. Comprehensive experiments demonstrate that our approach outperforms the state-of-the-art methods.


翻译:利用属性之间的关系是改善多种面部属性识别的关键挑战。 在这项工作中,我们关注空间和非空间关系等两类相关关系。在空间相关性方面,我们将空间相似性属性汇总到一个基于部分的小组中,然后推出一个群体关注学习,以引起小组的关注和基于部分的小组特征。另一方面,为了发现非空间关系,我们模拟一个基于小组的图表关联学习,以探索预先定义的基于部分基础群体的亲近性。我们利用这种亲近性信息来控制所有群体之间的通信,然后完善学习小组特征。总体而言,我们提议建立一个称为多比例组和图形网络的统一网络网络,纳入这两个新提出的学习战略,并产生粗到线的图形小组特征,以改进面部属性识别。全面实验表明,我们的方法超越了最先进的方法。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年12月18日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员