Exploiting the relationships between attributes is a key challenge for improving multiple facial attribute recognition. In this work, we are concerned with two types of correlations that are spatial and non-spatial relationships. For the spatial correlation, we aggregate attributes with spatial similarity into a part-based group and then introduce a Group Attention Learning to generate the group attention and the part-based group feature. On the other hand, to discover the non-spatial relationship, we model a group-based Graph Correlation Learning to explore affinities of predefined part-based groups. We utilize such affinity information to control the communication between all groups and then refine the learned group features. Overall, we propose a unified network called Multi-scale Group and Graph Network. It incorporates these two newly proposed learning strategies and produces coarse-to-fine graph-based group features for improving facial attribute recognition. Comprehensive experiments demonstrate that our approach outperforms the state-of-the-art methods.
翻译:利用属性之间的关系是改善多种面部属性识别的关键挑战。 在这项工作中,我们关注空间和非空间关系等两类相关关系。在空间相关性方面,我们将空间相似性属性汇总到一个基于部分的小组中,然后推出一个群体关注学习,以引起小组的关注和基于部分的小组特征。另一方面,为了发现非空间关系,我们模拟一个基于小组的图表关联学习,以探索预先定义的基于部分基础群体的亲近性。我们利用这种亲近性信息来控制所有群体之间的通信,然后完善学习小组特征。总体而言,我们提议建立一个称为多比例组和图形网络的统一网络网络,纳入这两个新提出的学习战略,并产生粗到线的图形小组特征,以改进面部属性识别。全面实验表明,我们的方法超越了最先进的方法。