For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the ordered Nearest Neighbor Graph is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of $n$ points in $\mathbb{R}^d$, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least $\log{n}/(4d)$. Apart from the $1/(4d)$ factor, this bound is the best possible. As for the abstract setting, we show that for every $n$-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree $\Omega(\sqrt{\log{n}/\log\log{n}})$.
翻译:暂无翻译