In this paper, we develop an Isabelle/HOL library of order-theoretic fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often with only antisymmetry or attractivity, a mild condition implied by either antisymmetry or transitivity. In particular, we generalize various theorems ensuring the existence of a quasi-fixed point of monotone maps over complete relations, and show that the set of (quasi-)fixed points is itself complete. This result generalizes and strengthens theorems of Knaster-Tarski, Bourbaki-Witt, Kleene, Markowsky, Pataraia, Mashburn, Bhatta-George, and Stouti-Maaden.
翻译:在本文中,我们开发了一个Isabelle/HOL的定点定点理论库。我们尽可能地将我们正规化:我们重新证实关于完整定点的若干众所周知的结果,这些结果往往只有反对称性或吸引性,这是反对称性或中转性隐含的温和条件。特别是,我们把各种理论概括起来,确保单点地图的准固定点与完整的关系存在,并表明(准固定点)固定点本身已经完成。这一结果概括并加强了Knaster-Tarski、Bourbaki-Witt、Kleene、Markowsky、Pataraia、Mashburn、Bhatta-George和Soututi-Maaden的理论。