Fourier phase retrieval is the problem of reconstructing a signal given only the magnitude of its Fourier transformation. Optimization-based approaches, like the well-established Gerchberg-Saxton or the hybrid input output algorithm, struggle at reconstructing images from magnitudes that are not oversampled. This motivates the application of learned methods, which allow reconstruction from non-oversampled magnitude measurements after a learning phase. In this paper, we want to push the limits of these learned methods by means of a deep neural network cascade that reconstructs the image successively on different resolutions from its non-oversampled Fourier magnitude. We evaluate our method on four different datasets (MNIST, EMNIST, Fashion-MNIST, and KMNIST) and demonstrate that it yields improved performance over other non-iterative methods and optimization-based methods.
翻译:Fourier 阶段检索是重建信号的问题,只考虑到其Fourier变异的规模。 优化基于优化的方法,如成熟的Gerchberg-Saxton或混合输入输出算法,努力从非过度采样的大小中重建图像。 这促使应用学习方法,在学习阶段后从非过度采样的量度测量中进行重建。 在本文中,我们希望通过一个深层神经网络级联来推动这些学习方法的极限,该级联根据非过度采样的Fourier规模的不同分辨率相继重建图像。 我们在四个不同的数据集(MNIST、EMNIST、Fashon-MNIST和KMNIST)上评估了我们的方法,并表明它比其他非过度采样方法和优化方法产生更好的效果。