The subjective nature of music emotion introduces inherent bias in both recognition and generation, especially when relying on a single audio encoder, emotion classifier, or evaluation metric. In this work, we conduct a study on Music Emotion Recognition (MER) and Emotional Music Generation (EMG), employing diverse audio encoders alongside the Frechet Audio Distance (FAD), a reference-free evaluation metric. Our study begins with a benchmark evaluation of MER, highlighting the limitations associated with using a single audio encoder and the disparities observed across different measurements. We then propose assessing MER performance using FAD from multiple encoders to provide a more objective measure of music emotion. Furthermore, we introduce an enhanced EMG approach designed to improve both the variation and prominence of generated music emotion, thus enhancing realism. Additionally, we investigate the realism disparities between the emotions conveyed in real and synthetic music, comparing our EMG model against two baseline models. Experimental results underscore the emotion bias problem in both MER and EMG and demonstrate the potential of using FAD and diverse audio encoders to evaluate music emotion objectively.
翻译:暂无翻译