Traffic simulation is an efficient and cost-effective way to test Autonomous Vehicles (AVs) in a complex and dynamic environment. Numerous studies have been conducted for AV evaluation using traffic simulation over the past decades. However, the current simulation environments fall behind on two fronts -- the background vehicles (BVs) fail to simulate naturalistic driving behavior and the existing environments do not test the entire pipeline in a modular fashion. This study aims to propose a simulation framework that creates a complex and naturalistic traffic environment. Specifically, we combine a modified version of the Simulation of Urban MObility (SUMO) simulator with the Cars Learning to Act (CARLA) simulator to generate a simulation environment that could emulate the complexities of the external environment while providing realistic sensor outputs to the AV pipeline. In a past research work, we created an open-source Python package called SUMO-Gym which generates a realistic road network and naturalistic traffic through SUMO and combines that with OpenAI Gym to provide ease of use for the end user. We propose to extend our developed software by adding CARLA, which in turn will enrich the perception of the ego vehicle by providing realistic sensors outputs of the AVs surrounding environment. Using the proposed framework, AVs perception, planning, and control could be tested in a complex and realistic driving environment. The performance of the proposed framework in constructing output generation and AV evaluations are demonstrated using several case studies.


翻译:在复杂和充满活力的环境中,交通量模拟是一种高效和具有成本效益的测试自动车辆(AV)的方法,在复杂和动态的环境中,对AV评价进行了许多研究,在过去几十年中,利用交通量模拟模拟,但目前的模拟环境落后于两个方面 -- -- 背景车辆(BV)未能模拟自然驱动行为,现有环境没有以模块方式测试整个管道。本研究的目的是提出一个模拟框架,以创造复杂和自然的交通环境。具体地说,我们将城市机动车辆模拟模拟器(SUMO)的修改版本与Cars Learning to Act (CARLA)模拟器(CARLA)模拟器结合起来,以创造模拟环境环境环境,同时向AV管道提供现实的传感器。在过去的研究工作中,我们创建了一个名为SUMO-Gym的开放源Python软件包,通过SUMO产生现实的公路网络和自然交通流量,并将拟议的OpenAI Gym(Sym)结合起来,为终端用户提供方便使用的方便使用。我们提议扩大我们开发的软件,增加CARLA(CA)模拟器的模拟模拟软件,从而利用一个现实的驱动力分析框架,从而将利用一个现实的模拟模型的模拟模型,从而丰富了对驱动力结构的模拟框架,从而丰富了对驱动力的模拟环境的模拟分析。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2021年6月25日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
VIP会员
相关资讯
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员