This paper introduces a novel approach to address the problem of Physical Robot Interaction (PRI) during robot pushing tasks. The approach uses a data-driven forward model based on tactile predictions to inform the controller about potential future movements of the object being pushed, such as a strawberry stem, using a robot tactile finger. The model is integrated into a Deep Functional Predictive Control (d-FPC) system to control the displacement of the stem on the tactile finger during pushes. Pushing an object with a robot finger along a desired trajectory in 3D is a highly nonlinear and complex physical robot interaction, especially when the object is not stably grasped. The proposed approach controls the stem movements on the tactile finger in a prediction horizon. The effectiveness of the proposed FPC is demonstrated in a series of tests involving a real robot pushing a strawberry in a cluster. The results indicate that the d-FPC controller can successfully control PRI in robotic manipulation tasks beyond the handling of strawberries. The proposed approach offers a promising direction for addressing the challenging PRI problem in robotic manipulation tasks. Future work will explore the generalisation of the approach to other objects and tasks.
翻译:本文引入了一种新颖的方法来解决机器人推力任务期间物理机器人互动的问题。 这种方法使用基于触觉预测的数据驱动前方模型, 向控制器通报被推的物体未来可能移动的情况, 如使用机器人触动手指的草莓干。 该模型被整合到一个深功能预测控制系统, 以控制推力期间电动手指上的干叶移位。 用机器人手指按3D的理想轨迹推动一个物体是高度非线性和复杂的物理机器人互动, 特别是当该物体没有被精确掌握时。 提议的方法控制了在预测视野内触动手指上的干动。 提议的FPC的有效性体现在一系列测试中, 涉及在集束中推动草莓的真正的机器人。 结果表明, D- FPC控制器能够成功地控制机器人操纵任务中的 PRI 。 提议的方法为处理机器人操纵任务中具有挑战性的 PRI 问题提供了很有希望的方向 。 未来的工作将探索其他物体和任务的通用方法 。</s>