Detecting players from sports broadcast videos is essential for intelligent event analysis. However, existing methods assume fixed player categories, incapably accommodating the real-world scenarios where categories continue to evolve. Directly fine-tuning these methods on newly emerging categories also exist the catastrophic forgetting due to the non-stationary distribution. Inspired by recent research on incremental object detection (IOD), we propose a Refined Response Distillation (R^2D) method to effectively mitigate catastrophic forgetting for IOD tasks of the players. Firstly, we design a progressive coarse-to-fine distillation region dividing scheme, separating high-value and low-value regions from classification and regression responses for precise and fine-grained regional knowledge distillation. Subsequently, a tailored refined distillation strategy is developed on regions with varying significance to address the performance limitations posed by pronounced feature homogeneity in the IOD tasks of the players. Furthermore, we present the NBA-IOD and Volleyball-IOD datasets as the benchmark and investigate the IOD tasks of the players systematically. Extensive experiments conducted on benchmarks demonstrate that our method achieves state-of-the-art results.The code and datasets are available at https://github.com/beiyan1911/Players-IOD.


翻译:从体育广播视频中检测选手对于智能事件分析至关重要。然而,现有方法假定固定的选手类别,无法适应类别不断演变的现实场景。在新兴的类别上直接微调这些方法也存在着灾难性遗忘问题,因为分布是非稳态的。受到最近针对增量式目标检测 (IOD) 的研究的启发, 我们提出了一种细化响应蒸馏 (R^2D) 方法,有效缓解了选手 IOD 任务的灾难性遗忘问题。首先,我们设计了一种渐进的粗到细的蒸馏区域划分方案,将分类和回归响应从高价值和低价值区域中分离出来,以实现精确和细粒度的区域知识蒸馏。随后,在具有不同重要性的区域上开发了一种量身定制的细化蒸馏策略,以解决选手 IOD 任务中显着的特征同质性所带来的性能限制。此外,我们提出了 NBA-IOD 和 Volleyball-IOD 数据集作为基准,并系统地研究了选手 IOD 任务。在基准测试上进行的广泛实验表明,我们的方法达到了最先进的结果。代码和数据集可在 https://github.com/beiyan1911/Players-IOD 中获取。

1
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
32+阅读 · 2022年4月23日
【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
13+阅读 · 2021年12月31日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
BERT 瘦身之路:Distillation,Quantization,Pruning
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员