We develop high performance multilingualAbstract Meaning Representation (AMR) sys-tems by projecting English AMR annotationsto other languages with weak supervision. Weachieve this goal by bootstrapping transformer-based multilingual word embeddings, in partic-ular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique forforeign-text-to-English AMR alignment, usingthe contextual word alignment between En-glish and foreign language tokens. This wordalignment is weakly supervised and relies onthe contextualized XLM-R word embeddings.We achieve a highly competitive performancethat surpasses the best published results forGerman, Italian, Spanish and Chinese.
翻译:我们通过在监管不力的情况下向其他语言投放英文减号说明,开发高性能的多语种表示式(AMR)符号。我们通过配制基于变压器的多语种词嵌入器(部分来自跨语言的ROBERTA (XLM-R large) 。我们开发了一种新颖的外语文本到英语的AMR调整技术,使用英文和英文符号的背景词对齐。这种单词匹配受到薄弱监督,并依赖于背景化的 XLM-R 字嵌入器。我们取得了超过德国、意大利、西班牙和中文最佳公布结果的高度竞争性业绩。