Leveraging Input Convex Neural Networks (ICNNs), ICNN-based Model Predictive Control (MPC) successfully attains globally optimal solutions by upholding convexity within the MPC framework. However, current ICNN architectures encounter the issue of exploding gradients, which limits their ability to serve as deep neural networks for complex tasks. Additionally, the current neural network-based MPC, including conventional neural network-based MPC and ICNN-based MPC, faces slower convergence speed when compared to MPC based on first-principles models. In this study, we leverage the principles of ICNNs to propose a novel Input Convex LSTM for MPC, with the specific goals of mitigating the exploding gradient problems in current ICNNs and reducing convergence time for NN-based MPC. From a simulation study of a nonlinear chemical reactor, we observed a reduction in convergence time, with a percentage decrease of 46.7%, 31.3%, and 20.2% compared to baseline plain RNN, plain LSTM, and Input Convex RNN, respectively.
翻译:暂无翻译