Accurate and reliable sensor calibration is critical for fusing LiDAR and inertial measurements in autonomous driving. This paper proposes a novel three-stage extrinsic calibration method of a 3D-LiDAR and a pose sensor for autonomous driving. The first stage can quickly calibrate the extrinsic parameters between the sensors through point cloud surface features so that the extrinsic can be narrowed from a large initial error to a small error range in little time. The second stage can further calibrate the extrinsic parameters based on LiDAR-mapping space occupancy while removing motion distortion. In the final stage, the z-axis errors caused by the plane motion of the autonomous vehicle are corrected, and an accurate extrinsic parameter is finally obtained. Specifically, This method utilizes the natural characteristics of road scenes, making it independent and easy to apply in large-scale conditions. Experimental results on real-world data sets demonstrate the reliability and accuracy of our method. The codes are open-sourced on the Github website. To the best of our knowledge, this is the first open-source code specifically designed for autonomous driving to calibrate LiDAR and pose-sensor extrinsic parameters. The code link is https://github.com/OpenCalib/LiDAR2INS.
翻译:精密可靠的传感器校准对于自动驾驶时使用LiDAR和惯性测量是使用LiDAR和惯性测量的关键。本文建议了3D-LiDAR的新型三阶段外向校准方法,以及自动驾驶所需的成形传感器。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便将外向参数从最初的大误差缩小到小误差范围。第二阶段可以进一步校准基于LiDAR-映射空间占用空间的外向参数,同时消除运动扭曲。在最后阶段,自行驾驶器的平面运动造成的 Z-轴校准错误得到纠正,最终获得准确的外向参数。具体地说,这种方法利用了道路场景的自然特征,使其独立和易于应用于大规模条件下。现实世界数据集的实验结果显示了我们的方法的可靠性和准确性。代码在Github网站公开来源。我们最了解的是,第一个开源码代码是专门设计用于自动驱动LAAR2号/MARIARrent 和OralLADLADrass 的校准链接。