Shape modeling of volumetric medical images is crucial for quantitative analysis and surgical planning in computer-aided diagnosis. To alleviate the burden of expert clinicians, reconstructed shapes are typically obtained from deep learning models, such as Convolutional Neural Networks (CNNs) or transformer-based architectures, followed by the marching cube algorithm. However, automatic shape reconstruction often falls short of perfection due to the limited resolution of images and the absence of shape prior constraints. To overcome these limitations, we propose the Reliable Shape Interaction with Implicit Template (ReShapeIT) network, which models anatomical structures in continuous space rather than discrete voxel grids. ReShapeIT represents an anatomical structure with an implicit template field shared within the same category, complemented by a deformation field. It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape. The valid template shape can then be utilized for implicit generalization. A Template Interaction Module (TIM) is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes. Experimental results on three datasets demonstrate the superiority of our approach in anatomical structure reconstruction. The Chamfer Distance/Earth Mover's Distance achieved by ReShapeIT are 0.225/0.318 on Liver, 0.125/0.067 on Pancreas, and 0.414/0.098 on Lung Lobe.
翻译:暂无翻译